
IGT: Inverse Geometric Textures

Ismael Garcı́a∗ Gustavo Patow†

Geometry and Graphics Group, Universitat de Girona

Figure 1: (left) An artist-created model fully rendered and in wireframe (197150 triangles, 62 fps). (middle) The strongly simplified model
(35834 triangles -82% reduction-, 165 fps) rendered with our technique. (right) Notice in the inset, that despite a drastic simplification, the
global appearance is maintained from the original model (top) to the simplified one (bottom).

Abstract

Preserving details from a high resolution reference model onto
lower resolution models is a complex, and sometimes daunting,
task as manual intervention is required to correct texture misplace-
ments. Inverse Geometric Textures (IGT) is a parameterization-
independent texturing technique that allows preservation of texture
details from a high resolution reference model onto lower resolu-
tions, generated with any given simplification method. IGT uses a
parameterization defined on the reference model to generate an in-
versely parameterized texture that stores, for each texel, a list with
information about all the triangles mapped onto it. In this way,
for any valid texture coordinate, IGT can identify the point and the
triangle of the detailed model that was projected, allowing details
from the reference model to be applied onto the fragment from the
low-resolution model. IGT is encoded in compact data structures
and can be evaluated quickly. Furthermore, the high resolution
model can have its own independent artist-provided, unmodified
parameterization, so that no additional effort is required to directly
use artist-designed content.

Keywords: Appearance preserving simplification, Detail-
recovery, Computer games, Texturing, Parameterizations, LoD

∗e-mail: igarcia@ima.udg.edu
†e-mail: dagush@ima.udg.edu

1 Introduction

Modern interactive applications (e.g., computer games) need many
instances of detailed geometric and multi-textured models provided
by artists to populate vast scenes (see Figure 1). Thus, interactive
applications must deal with level of detail (LoD) techniques, which
should preserve the visual quality of the original model. Further-
more, models should have a compact representation and provide
efficient visualization in a way that preserves high-definition details
at close view.

The texturing detail reproduction of a high resolution mesh on a
simplified model has proven to be a complex problem, often need-
ing manual user intervention. This usually implies individual pa-
rameterizations, extra textures and normal maps, unless specific
feature-preserving algorithms are used in the simplification.

Contributions: The key contribution of IGT is to decouple mesh
simplification from texturing parameterization. This is done by an
inverse parameterization that allows access to the original high res-
olution mesh encoded in a texture. Its main features are:



Figure 2: In general, artists provide a high resolution reference
mesh with its own parametric coordinates, a texturing parameteri-
zationMT a and textures with rich surface details.

• The artist is free to choose any texturing parameterization for
the model, because it is not affected by IGT.

• An artist-provided model can be simplified using any algo-
rithm, resulting in a higher quality mesh with correct textures
for all LoDs.

• When rendering a lower resolution model, the original high
resolution information can be retrieved and used for applica-
tions like color and texture preservation, normal mapping and
lighting, among others.

• As color and texturing information is correctly preserved be-
tween different LoDs, IGT allows changes in LoD much ear-
lier and with lower resolution models than other techniques.

• It is GPU-friendly, allowing a fast and compact implementa-
tion.

1.1 Related Work

IGT is a technique closely related to attribute-preserving simplifica-
tion methods, and thus related to both texturing parameterizations
and simplification methods. The survey by Hormann et al. [2007]
gives complete detailed information on general texturing parame-
terizations.

Texturing Parameterizations: In general, there are two big
families of texturing parameterizations: those that introduce dis-
continuities in the parameterized object, and those that do not,
called seamless parameterizations. IGT can work smoothly with
both kinds.

Among the first kind, some approaches consider larger patches and
try to make the texturing parameterization per patch as conformal
or area-preserving as possible, to avoid stretching the texture differ-
ently on different triangles of the model [Lévy et al. 2002] [Sander
et al. 2003] [Sorkine et al. 2002]. The technique we present here can
be successfully used with a high resolution reference model, which
in general is parameterized by an artist with any of these methods
(see Figure 2).

Examples of seamless texturing parameterizations that have been
studied are cubes, spheres, cylinders, simplicial complexes and pe-
riodic planar regions with transition curves [Hormann et al. 2007].
For general objects, seamless parameterizations can be built only
for texture domains that have the same topology and are close in
shape to the target object. One powerful method for this is the Poly-
CubeMap [Tarini et al. 2004], which is a mechanism that allows a
seamless texturing parameterization of a 3D mesh. A polycube is a
3D shape composed of many unit-sized cubes attached face-to-face
that is used as the texture domain. These parameterizations have
the advantage of enabling the use of most simplification methods,

something which can be exploited in combination with IGT to im-
prove both quality and development speed.

Unconstrained Mesh Simplification: Hoppe [1996] intro-
duced a simplification procedure to construct a progressive mesh
representation from an arbitrary mesh. Later, Garland and Heck-
bert [1997] presented a fast incremental method that applies an edge
collapse operator guided by a measure based on quadric error met-
rics. More recently, Lee et al. [2005] introduced the idea of mesh
saliency as a measure of regional importance for meshes. None of
those methods aim at preserving surface attributes, so they are not
very useful for textured models, but could be combined with IGT
and a seamless parameterization to provide high quality results.

Attribute-preserving simplification: The first general ap-
proach for detail-recovery was presented by Cignoni et al. [1998]
[1999], using resampled textures to decouple attribute detail rep-
resentation from geometry simplification. There, preservation is
performed after simplification by building a set of triangular tex-
ture patches that are then packed into a single texture map. Later,
Tarini et al. [2003] presented a method to produce a normal-map by
computing per-texel visibility and self-occlusion information. Carr
and Hart [2002] used a similar approach for procedural texturing.
Techniques like those used by Policarpo et al. [2005] render de-
tailed geometric appearance on low polygonal models. All of them
require resampling the high resolution model into an attribute tex-
ture. Chen and Chuang [2006] considered the adaptation of tex-
tures for progressive meshes. In general, most of the techniques
mentioned also require a new texture for each simplification step.
IGT outperforms their results because it directly queries the refer-
ence model, without the need of over-sampling or using multiple
textures for different levels.

Some methods have been proposed to simplify polygonal meshes
while preserving color and texture. Garland and Heckbert [1998]
introduced a quadratic error metric for measuring vertex-to-plane
distances. Sander et al. [2001] took into account the texture stretch
and texture deviation introduced by edge collapses. Cohen et al.
[1998] constructed a multi-resolution model with a simplification
sequence that constrains the simplification of the patch boundaries.
This is also done by the commercial package Polygon Cruncher
[Mootools 2007]. Unfortunately, those methods either do not sim-
plify seams, which results in a lower quality mesh, or generate tri-
angles that might span the texture space outside any chart. IGT
could be used to help simplify these meshes, but the simplification
should be made with models with as few seams as possible in order
to get better quality results.

Lacoste et al. [2007] adaptively sampled and encoded the normal
field of the high resolution model in an octree. IGT also encodes the
model into texture space, but uses a projection and data structures
that prove much more efficient in generality (e.g., two-sided faces
are admitted), storage and speed of evaluation. Also, IGT is less
restrictive with respect to the simplification method used.

1.2 Overview

Given the texture coordinates of point δs from a simplified low res-
olution geometric model Gs, IGT is a technique that defines an
inverse mapping I. This inverse mapping allows us to find the cor-
responding point δ from the high resolution reference mesh G, and
to retrieve its attributes, e.g. color and shading information. IGT
requires a primary parameterization on the reference model to gen-
erate an inverse parameterized texture, and stores for each texel a
list with information about all triangles that are mapped onto it.
This way, IGT can identify the point and the triangle of the detailed
model that was projected for any valid texture coordinate. This al-
lows application of details from the reference model onto the frag-



ments of a low-resolution model which can be simplified so that the
parameterization is preserved. If needed, the high resolution model
can also have another independent artist-provided parameterization
to be able to directly use the original input textures.

2 Inverse Geometric Textures (IGT)

In this section we will define the spaces and mappings needed for
IGT, as well as describe its construction process and usage. Sub-
sequently, we will provide a generalization of its definition, data
structures needed, shader LoD and filtering.

Now, we present a simplified version of the notation of texture
spaces and mappings needed to define IGT and its main features.
We define the object space of vertex positions as R3, and textures
as belonging to a space T2. The space T2 is the space referred to
by the typical (u, v) texture coordinates associated with every ver-
tex in a model. In general, a texturing primary parameterization
assigns a texture position τ to a point δ in 3D space using a map-
pingMT . See Figure 3, where the head of the Aikobot model was
parameterized with a simple cylindrical parameterizationMT , and
the helmet with a spherical one. The full resolution mesh, denoted
by G, and simplified versions used as levels of detail, denoted by
Gs, are in R3. When texture coordinates for Gs are preserved after
the simplification process, we can safely assume that there exists
for each point in Gs a texture coordinate in T2. Thus, the primary
parameterization MT is also used to map the simplified mesh to
IGT. For instance, the Aikobot head is firstly mapped from G to a
cylinder with a mapping T , and the result is used to index a texture
by a mappingM (MT =M◦ T ). See Section 5.

Figure 3: Different spaces used for texture mapping, and IGT
construction: Given an initial geometry G ∈ R3 (left), it can
be parameterized in different ways. IGT uses a parameterization
MT =M◦ T to store lists of triangle information from G in 2D
texture space T2. The mappings T ,M and I are also represented
in the figure.

Each vertex in G has a texture position in T2 associated to it by
means ofMT . At rendering time, the texture coordinates of each
vertex are interpolated and each fragment δ receives a texture po-
sition τ to fetch its attributes, like color or shading information.
For convenience, let’s assume thatMT also projects δs ∈ Gs to
τ . The functionMT completely defines the primary parameteri-
zation. Artists usually provide models together with another, often
manually-defined, texturing parameterizationMT a (see Figure 2).

Under this simplified description, IGT is an inverse mapping I that
establishes a bijection between the points in T2 to the respective
points in R3, so that we know which point in R3 projects onto any
given point in the texture. To be effective, IGT stores all the infor-
mation of I in a texture TH defined in texture space T2, where each
point τ contains a reference to the point δ in R3 that maps onto it.

The texture TH ∈ T2 is discrete, i.e. made of texels of a finite
area. Thus, each texel of TH contains a list of the triangles that

Figure 4: General setting: Given an initial geometry G ∈ R3

(left), texturing parameterizations have an associated 3D texture
space T3 and a 2D texture space T2, which encodes the attributes.
Now,MT =M◦P ◦ C .

are mapped onto the area of the texel. We do this by storing a
list of triangle identifiers at each texel in TH . Given a point τ in
TH , retrieving its 3D back-projected point simply means verifying
which of the triangles in the corresponding list contains that point.

Certain parameterizations, like PolyCubeMaps [Tarini et al. 2004],
cannot be explained with the spaces used in previous sections. In
order to be more generic, and better explain some IGT features,
we need an intermediate texture space T3, which is a 3D general-
ization of the traditional space of (u, v) texture coordinates. See
Figure 4. A point δ ∈ R3 is mapped to a point ν ∈ T3 with a
mapping C. In this space, a projection P is used to project the point
ν onto a surface S in T3: the cylinder for a cylindrical projection,
or the polycubes for PolyCubeMaps. With respect to our previous
notation, T = P ◦ C. The projection P and the posterior map-
pingM basically map a point in T3 onto the texture space T2 by
defining a line in T3 that passes through the point and intersects
the surface S. To be precise, IGT represents the inverse mapping
I = (M ◦ P)−1 : T2 → T3, see Figure 4. Observe that, ac-
tually, we need to store information from T3, not from R3. One
requirement of IGT is that the projection P must be bijective.

It is important to remark that the original artist-provided parame-
terization is not affected at all by the usage of IGT, so the artist is
free to choose any parameterization method he/she likes.

2.1 Building IGT

The generation of the data structures needed for IGT is performed
in an off-line pre-processing stage. The process starts with a high
resolution reference model G adequately parameterized withMT
andMT a. Then, the triangles ofG are projected and mapped with
MT onto the texture TH . Every texel in TH is annotated with the
list of all triangles whose projection/mapping covers it totally or
partially (see Figure 3). As now the texture TH stores references
to lists of triangle identifiers, it plays the role of a spatial hash that
allows the querying of a minimum number of list entries each time
a point τ must be inversely parameterized. This texture is called the
hash texture. The lists are stored in a second texture called the list
texture, texture coordinates of the triangles (fromMT ) are stored
in the triangle texture, and their attributes (e.g., texture coordinates
for the artist-provided parameterization, ambient occlusion term,
etc.), are encoded in the attribute texture. If needed, all textures can
be packed into a single atlas.

The construction of the lists is done by verifying every triangle from
G, and generating a list entry in a conservative manner, even if the
triangle slightly touches the texel. Firstly, the triangles in G are
mapped to the hash texture in T2, and are checked for intersection
with the texel area. If the intersection is not empty, then a new entry
is generated and added to the respective list. The whole process
only takes between a few seconds and a couple of minutes even for
the most sophisticated examples we have tried.



Figure 5: Given point δs ∈ Gs, mapping MT transforms it to
point τ ∈ T2, where the texel list is retrieved and its triangles
evaluated, finding the back-projected point that allows querying the
artist-provided texture Ta.

2.2 Using IGT

Given a point δs from Gs, IGT is used to retrieve information from
the reference modelG. As long as δs can be projected/mapped onto
T2, we use the projected point τ to find the corresponding point
from the reference mesh G, as explained before. Actually, τ is the
projected point in T2 for both δs and δ. The only real requirement
imposed onto the point δs is that it must be mapped onto T2.

When rendering a low resolution model Gs, fragments δs are gen-
erated, in such a way that they can be inversely parameterized to
retrieve the point δ from the reference model. In fact, computing
τ is needed only to fetch the right list from the hash texture. To
determine the intersection point, we implemented this with a sim-
ple point-in-triangle code for orthogonal projections, and a standard
ray-triangle intersection code [Lofsted and Akenine-Moller 2005]
for the other projections. Once the right intersection point and tri-
angle are found, we can fetch any information originally associated
to the reference model G and apply it to shade/compute point δs

(see Figure 5). Applications of this can be found in Section 3.

In the general setting, intersections cannot be computed in T2, as
a triangle in T3 can be projected onto disjoint parts in T2 (as in
PolyCubeMaps). Hence, we generate the line in T3 used by P to
project the point τ , and compute its intersection with the triangles in
the list. If the parameterization is bijective, this intersection exists
and the intersected point is ν.

2.2.1 Decoupling Parameterization from Simplification

One of the key points of IGT is that it allows the decoupling of
texturing parameterization and model simplification. If needed, the
reference model G stored in IGT may have another, artist-provided
parameterizationMT a for texturing purposes, which is completely
independent of the primary parameterizationMT used for the sim-
plification. When rasterizing a low resolution model, in order to
guarantee that the generated fragments can be mapped onto TH ,
the simplification method should only preserve the primary param-
eterization, and not the artist-provided one.

An example can be seen in Figure 5, where the Aikobot head model
G was textured with cylindrical and spherical maps as the pri-
mary parameterization MT , and a LSCM multi-chart method as
the artist-provided parameterizationMT a. A fragment δs, gener-
ated by rendering the low resolution model Gs, is projected with
MT and the corresponding list is fetched and evaluated, finding its
back-projected point and the respective triangle from the reference
model G. Then, by using MT a with δ, the shading information
from the reference model G can be fetched and used.

2.3 Data Structures and Evaluation

IGT can be encoded in highly compact data structures. In particular,
it can be encoded in four textures that can be combined, according
to need, into one single texture atlas.

• The hash texture is usually a small RGBA8 texture, with di-
mensions ranging from 64 × 64 to 256 × 256. Each texel
encodes in its first three bytes the location of the correspond-
ing list in the list texture. The fourth byte is used to store the
length of the list, with 0 representing an empty list.

• The list texture is encoded into another RGBA8 texture, where
each list is consecutively stored. Whenever a list should be
split, its position is moved to the beginning of the next line. As
lists are usually short, about three elements long (See Section
4), the wasted space is only about 1.5%.

• The triangle texture consecutively stores texture coordinates
in T3 for each of the three vertices of the triangle. Usually,
this means only storing the (u, v) coordinates, although some
parameterizations could require an extra channel.

• If needed, an attribute texture can be created with extra infor-
mation, like triangle color or the artist-provided parameteri-
zation coordinates.

With respect to the computational cost, IGT involves the evaluation
of the hash texture, which represents one texture fetch, and three
extra fetches in the triangle texture for each entry in the list texture.
On average, we found that three entries in the List Texture are usu-
ally needed, so the effective average cost of IGT is of ten texture
fetches in total, plus the fetches on the attribute texture. For exam-
ple, solid color represents a single fetch, but for the coordinates of
the artist-provided parameterizationMT a, three extra fetches are
needed.

2.4 Shader LoD

IGT is a technique that should be used from close to large distances,
as its evaluation is more complex than direct texturing techniques.
We have implemented a shader LoD technique which changes the
shader as soon as the difference with a simpler texel fetch can be
disregarded. When the observer cannot distinguish one from an-
other, we swap to a simpler shader that only fetches the relevant
information from a traditional texture in T2 space, using only the
primary parameterization MT . For further distances, MIP maps
for this texture can be used, resulting in a smooth minification of
the texture details.

2.5 Filtering

In modern GPU applications, the filtering issue is of great impor-
tance. IGT is also able to perform correct filtering; the solution
implemented consists of retrieving the nearest samples (five in our
case) from the hashed data and then blending them. The only dif-
ference with respect to the non-filtered case is that the mip-map
level selection must be set so that it is based on the change of the
fragment texture positions in T3 (using functions dFdx and dFdy in
GLSL or ddx and ddy in Cg), rather than the simple texture posi-
tion in T2. Also, when fetching the artist-generated texture from the
artist-provided parameterization, normal filtering and mip-mapping
can be used. This solution is used by several authors [Lefebvre and
Hoppe 2006] [Nehab and Hoppe 2007] [Tarini et al. 2004]. We im-
plemented this, finding the same factors as pointed out by Lefebvre
and Hoppe [2006]: about 3.9 for going from one sample to four
samples per pixel.



Figure 6: IGT allows simplification of a textured model (left) with
the most convenient method (other columns). Polygon Cruncher
(PC, second column) cannot simplify to more than 2780 triangles.
In the insets, a rear view of head details can be observed (1384
triangles, 450 fps).

3 Advantages of IGT

IGT is a technology that allows the decoupling of texturing and
simplification methods, easing the work performed by developers
once the modeler has delivered a high resolution, parameterized
reference model G. Information can be associated to a reference
mesh at three different levels: at the triangle level, as when dealing
with constant colors; at the vertex level, as with normal mapping or
per-vertex ambient occlusion; and at the level of textures mapped
onto the high resolution model. IGT is a versatile technique that
provides smooth retrieval of information at these three levels.

• Texturing, Normals and Simplification: As mentioned,
one of the key points of IGT is its ability to decouple texturing
from simplification. For instance, in Figure 6, the head of the
Aikobot model was independently parameterized and textured
using multi-charts as MT a. Simplification with traditional
techniques results either in mixed textures or lower quality
meshes due to the seam preservation constraint. As before,
IGT uses a cylindrical primary parameterizationMT for the
head, and a spherical one for the helmet. The combination of
those seamless parameterizations with simplification methods
leads to a simplified model with a high quality mesh and cor-
rectly preserved textures. Also, with IGT, tile-based textures
can be used, as the indirection provided by IGT can be used
to reference a highly defined texture repeated over the entire
surface, as shown in Figure 7. Also, it is a common practice
to generate a normal map so that a lower resolution model
with an applied normal map resembles the original reference
model. With IGT we can have two-level normals: one set ob-
tained directly from the triangles of the reference model, and
one applied as a regular normal map for the fine details taken
directly from the texture coordinates of the reference model.
See Figure 1.

• Texture Transfer: For an application that does not require
dynamically changing LoD, one can map details to a simpli-
fied mesh by simple projection (e.g., based on coarse mesh
normals, as done by Tarini et al. [2003]). However, IGT pro-
vides a more natural way of doing so, as it allows the transfer
of details between different parameterizations at any simpli-
fication level, without requiring a high resolution texture to
store the details. As an example, IGT used in combination
with polycubes requires much less storage memory than the
original PolyCubeMaps alone, and with a superior quality.

Figure 7: Tiling textures with IGT: from left to right, the origi-
nal model (131072 triangles), the model simplified with Polygon
Cruncher (only up to 15738 triangles), and the model simplified as
per Hoppe [1996] combined with IGT (3280 triangles, 415 fps).

• Solid Boundaries: As mentioned in Section 1.1, feature
preserving simplification methods tend to mix colors at the
boundaries of triangles with different solid colors. IGT pro-
vides automatic multiresolution details, allowing the preser-
vation of sharp solid boundaries between colors or texture
borders. For example, in Figure 8 we can see a comparison of
some simplification methods used with and without IGT. In
this case we kept the original colors assigned by the artist at
the vertex level in the attribute texture: there is no need to de-
fine an artist-provided parameterizationMT a, as colors can
be directly retrieved from the reference model.

• Volumetric and Procedural Texturing: Volumetric
functions [Kajiya and Kay 1989] are usually point-wise eval-
uated on the surface of the reference model G. For lower
resolution models Gs the simplified triangles span a different
region of the volume, producing noticeable changes in appear-
ance. To our knowledge, the only solution for consistently
applying a volumetric texture onto Gs is to sample it on G
transferring the result to a texture, and use it for the succes-
sive LoDs [Carr and Hart 2002]. IGT solves this problem, as
only information fromG is used to texture all those of low res-
olution (See Figure 9). IGT also allows a smooth integration
of effects like traditional 2D animation, animated procedural
textures (e.g. reaction diffusion), or an animated volume (e.g.
smoke), with simplified models without any extra information
other than the original animation information and IGT itself.

• Animation: IGT can be used to improve mesh quality for
animation. The LoD being visualized can be animated and, as
IGT works entirely in texture space, it will work seamlessly
as long as texturing information is not modified by the pro-
cess. IGT can even prove beneficial in cases where the use of
traditional simplification techniques results in a LoD with in-
sufficient triangles in joints with large stretching. See Figure
10.

4 Experimental Results

In Table 1, results for different combinations of input models and
parameterizations are presented. In particular, we have imple-
mented combinations of cylindrical and spherical mappings, Least
Squares Conformal Map (LSCM) multi-charts [Lévy et al. 2002],
Angle Based Flattening (ABF++) multi-charts [Sheffer et al. 2005],
Iso-Charts [Zhou et al. 2004], PolyCubeMaps (PCM) [Tarini et al.



Figure 8: Solid color preservation: the Aikobot body armor model
in Figure 1 has artist-painted colors directly at the vertex level.
With traditional methods, either the colors or the mesh quality suf-
fer, while IGT allows their preservation (738 triangles, 650 fps).

2004], and Geometry Images (GI) [Gu et al. 2002]. From this table,
we can see that the storage needs of IGT are small, requiring less
than a medium-resolution 10242 normal map (RGBA8 encoded, 4
MB). In the examples, the attribute texture stored the extra informa-
tion for shading. We have found, in our examples, that lists stored
in the list texture are short (three triangles on average). However,
this can vary for an irregular triangle density. Using current avail-
able graphics hardware, a limit imposed by the size of a single tex-
ture map limits IGT to work with models up to 7 million triangles,
unless paging strategies are used. As mentioned above, IGT does
not need to store the original triangles in R3, but only the associ-
ated texturing coordinates in T3, which usually results in storage of
(u, v) pairs, reducing one third of the storage. Only parameteriza-
tions that require full 3D information, e.g., PolyCubeMaps, would
need to store (u, v, w) triplets. Also, depending on the precision
needs, storage can be further reduced by using fixed point arith-
metic, like OpenGL 2.0 RGB9E5, which is a standard 4-byte/texel
format.

In Figure 1, we can see the Aikobot model, which is an
artist-created model provided with a multi-charts parameterization
MT a. In that model, there are lots of texture discontinuities, pos-
ing a serious problem to simplification methods that try to preserve
texturing. As primary parameterizationMT , i.e. the one used for
simplification purposes, we have successfully applied a spherical
mapping to the helmet, a cylindrical mapping to both the body ar-
mor and the head, and iso-charts for the body, as seen in Figures 6
and 8. As the parameterizations for helmet, head and body armor
are seamless, simplification algorithms like the ones used by Hoppe
[1996] and Garland and Heckbert [1997] were applied. For the rest

Figure 9: IGT preserves shape and appearance of solid textures,
while direct texture application onto different LoDs [Hoppe 1996]
leads to non-preservation of the features (304 triangles, 535 fps).

Figure 10: IGT is compatible with animation of LoD models. We
can see the model in an animation posture, and detailed views of
the back when simplified with and without IGT. All models have
normals mapped from the high resolution model (30000 triangles)
to the lower resolution ones, generated with Hoppe [1999] (974
triangles, 410 fps).

of the body, the simplification method was forced to preserve the
seams in the parameterization [Mootools 2007].

We compared the performance of IGT with respect to rendering
the full resolution model and traditional LoD techniques [Mootools
2007] (see Figure 11). In all cases, LoD changes were made with
late switching, where the replacement between LoDs is made when
the visual difference is no longer noticeable. It is important to men-
tion that IGT allows this replacement to be done much earlier than
other techniques. If needed, a better replacement strategy is de-
scribed by Giegl and Wimmer [2007]. The results show that IGT
outperforms the rendering of the reference model, even if no LoD
changes are made. Renderings were made at 1024×768, on a quad
core Pentium IV with a GeForce 8800 card.

We can get information of the overhead incurred when using IGT
by making a comparison between models at the same frame rates.
Results at fixed frame rates for a model simplified using traditional
techniques, with a mesh simplified with details mapped by simple
normal projection using [Orgaz 2007] and with IGT, are shown in
Table 3. The overhead introduced by IGT is small, reinforcing the
idea that IGT can present models with less overhead much earlier
than other techniques. Also, it must be taken into account that there



Reference Models Polyg. Count IGT Param. Artist Param. Hash Texture. Lists Tex. Trangles Tex. Attrib. Tex. Memory usage
(triangles) (Primary) (Secondary) (RGBA8) (RGBA8) (RGB9E5) (RGB9E5) (MB)

Armadillo 30000 PCM LSCM 128x128 512x256 512x256 512x256 1.56
Gargoyle 131072 GI LSCM 128x128 512x256 512x512 512x512 2.56

SpaceShip Room 84140 LSCM LSCM 128x128 512x512 512x480 512x480 2.94
SpaceShip 15338 ABF++ LSCM 64x64 256x256 256x128 256x128 0.52
Laurana 10000 PCM Procedural Tex. 128x128 512x256 256x128 512x128 0.94
Bunny 15000 PCM LSCM 128x128 256x256 256x256 256x256 0.81

Aikobot Armor 7798 Cylindrical —– 128x128 128x128 128x128 128x128 0.25
Aikobot Helmet 6628 Spherical LSCM 128x128 256x128 256x128 256x128 0.44

Aikobot Face 39204 Cylindrical LSCM 128x128 512x256 512x256 512x256 1.56
Aikobot Body 49858 Iso-charts LSCM 256x256 512x320 256x480 256x480 1.81

Table 1: Memory usage for various examples. Acronym meanings are: LSCM, Least Squares Conformal Maps; PCM, Polycube-maps;
ABF++, Angle Based Flattening; GI, Geometry Images; RGB9E5, a standard 4-byte/texel OpenGL 2.0 format.

Hash AvgLength Framerate TotalMem
128x128 8.2 110fps 1.50MB
256x256 5.3 260fps 1.81MB
512x512 3.1 343fps 3.81MB

1024x1024 2.6 400fps 8.94MB

Table 2: Dependence of the average list length, total memory con-
sumption and frame rate on the hash resolution. All values refer to
the Aikobot body in Figure 8.

are three factors to compare: quality, memory and speed. At equal
frame rates, it can be seen that IGT provides the same quality with
lower storage needs.

Finally, it is important to mention the influence of the hash size in
the requirements and performance of IGT. As expected, as the hash
increases resolution, lists for each texel will get shorter on average,
but at an increased memory cost. For certain texels, however, this
length has a lower bound, as any sized texel that covers a vertex
shared by, for instance, six triangles will have (at least) a length of
six entries. On the other hand, reducing list average length means
fewer evaluations at the pixel shader, resulting in an improved ren-
dering speed. This can be seen in Table 2 for the Aikobot body.

Figure 11: Frame rates of IGT when compared with G (125932
triangles) and traditional LOD. Distances are in arbitrary units and
curves are named after the number of triangles and the technique
used (PC stands for simplification with Polygon Cruncher).

5 Discussion and Limitations

From the above results, it can be seen that IGT outperforms tradi-
tional methods in speed and quality. This is basically because IGT
sends many times fewer triangles through the pipeline, moving the
workload to the pixel shaders. As a model covers less and less pix-
els, less pixel shaders are needed, thus resulting in a smoothly im-
proved speed, which can be inferred from the slope in the curves for
a given LoD with IGT in Figure 11. Traditional simplification tech-
niques, which produce models without requiring special shaders,
need to process a constant number of triangles for longer distance

Distance PC IGT NP Framerate Ratio
10.59 6628 3519 6628 45 1.9
26.51 6628 3642 6628 21 1.8
50.05 6628 5370 6628 16 1.2

139.95 6628 6628 6628 19 1.0

Table 3: IGT Overhead (columns from left to right): distance in ar-
bitrary units from the observer, number of triangles for a reference
model simplified with Polygon Cruncher (PC), for IGT, for textures
transferred by normal projection (NP), frame rate and overhead
ratio. Values refer to the Aikobot head in Figure 6.

intervals, making the curves quite flat.

There is one important aspect of our technique that must be
mentioned: although IGT is independent from both the textur-
ing parameterization chosen and the simplification method used, it
must be clear that simplification methods are not parameterization-
independent. Multi-chart parameterizations, which are most com-
monly used by artists, produce seams, so they require specific con-
strained simplification algorithms to preserve those seams [Garland
and Heckbert 1998] [Sander et al. 2001]. Therefore, the model can-
not be simplified and retain a good quality at the same time, as the
simplification algorithm (e.g. Polygon Cruncher [Mootools 2007])
must preserve the seams to avoid texture artifacts, simplifying chart
interiors only (See Figure 12, first row, where the algorithm can-
not simplify the model further than 16346 polygons, with a poor
quality mesh). However, parameterizations generating few charts,
like iso-charts [Zhou et al. 2004], allow a better simplification qual-
ity as there are fewer seams to preserve (Figure 12, second row).
Without IGT, they can also introduce texture distortion and blurring
if the artist textures are resampled to new ones (compare with the
third row in Figure 12). IGT can be successfully combined using
these as primary parameterizations, in combination with the origi-
nal artist parameterization, providing almost perfect texture preser-
vation and a significant improvement even for extremely simplified
models. However, we can conclude that the best combination with
IGT is using a seamless primary parameterization, such as spheri-
cal, cylindrical or PolyCubeMaps, that tolerates most simplification
methods (like Garland et al. [1998] or progressive meshes [Hoppe
1996]) basically because the texture coordinates can be calculated
from the original vertex coordinates for any LoD, without requiring
a manual fine-tuning step (See Figure 12, fourth row).

IGT can encounter problems when applied to non-bijectively pa-
rameterized objects, where more than one triangle in T3 projected
by P cover the same point τ in T2. In this case, when IGT is used
to add detail to the reference model, the ambiguities can be easily
solved just by looking up the right intersection in the list. However,
when a lower resolution model generates a fragment that does not
exactly coincide with any high resolution fragment, the ambiguity
is unavoidable and some heuristic, like taking the closest fragment,



Figure 12: Sensitivity of IGT to different primary parameteriza-
tions MT . All models (except of the third row) use an LSCM
artist-provided parameterization. First row: LSCM is also used as
primary. Second row: Iso-charts are used as primary. Third row:
the texture was resampled to an Iso-chart, and simplified. Fourth
row: LSCM for artist and PolyCubeMaps (PCM) for primary. PC
stands for Polygon Cruncher and GH97 for [Garland and Heckbert
1997].

should be used. It must remain clear that this problem is not intro-
duced by IGT, but by the chosen parameterization. Also, IGT is a
texturing technique, and as usually happens with these techniques,
silhouettes of a low resolution model cannot be hidden with IGT.

Finally, IGT is a technique that relies intensively on modern GPU
capabilities, as it depends on the compromise between the fill rate
(number of rendered triangles) vs. the power of pixel shaders to
evaluate it. In our experiments we have found that IGT behaves
very well in terms of speed when compared with rendering the full

resolution model, providing excellent quality when compared with
other LoD techniques.

6 Conclusions

IGT provides an inverse mapping from texture space to object
space, and can be used to apply information generated for a refer-
ence model onto any simplified version. IGT allows the usage of a
parameterization for simplification purposes that is independent of
the parameterization provided by the artist for texturing. This way,
parameterization and simplification are decoupled from each other.
The best results are obtained if the artist-provided parameterization
MT a, usually as a multi-chart parameterization, is used in com-
bination with a seamless primary parameterization. For example,
cylindrical, spherical maps, or polycubes, allow the user to choose a
simplification method. Being parameterization-independent, IGT is
compatible with both mip-mapping and filtering techniques as long
as the artist-provided parameterization is compatible. IGT does not
provide filtering by itself, but it enables the combination of advan-
tages of different parameterizations in a way that was impossible
before without a great deal of work (e.g., by transferring the textur-
ing information to a texture).

This work opens three main areas of research. On the one hand,
adding geometric detail like Porumbescu et al. [2005] seems a log-
ical next step, as it would allow the addition of detail to the refer-
ence model, and not only to the simplified versions. On the other,
introducing animation in the triangles of the reference model that
are not on the lower quality models would allow interesting effects
like approximate facial animation. Finally, geometry compression
techniques that would allow even higher resolution models to be
used with IGT should be studied.

Acknowledgements

We want to thank Ignacio Martin, Carles Bosch, Albert Mas, Tere
Paradinas, Florent Duguet, Celine Loscos and Xavier Pueyo for
proofreading different versions of this manuscript, Marco Tarini
and Pere-Pau Vázquez for helping with code samples, Jordi Rovira
and Álvar Vinacua for useful discussions, Vivien Greatorex for the
voice-over, Fran González for all his crucial help and the anony-
mous reviewers for comments and constructive criticism. We are
absolutely indebted to Pere Brunet for his advice during the whole
process. Aikobot Maria Model from DAZ 3D, www.daz3d.com.
This project was funded by grant TIN2007-67120 from the Spanish
government.

References

CARR, N. A., AND HART, J. C. 2002. Meshed atlases for real-time
procedural solid texturing. ACM Trans. Graph. 21, 2, 106–131.

CHEN, C.-C., AND CHUANG, J.-H. 2006. Texture adaptation for
progressive meshes. Computer Graphics Forum 25, 3, 343–350.

CIGNONI, P., MONTANI, C., SCOPIGNO, R., AND ROCCHINI,
C. 1998. A general method for preserving attribute values on
simplified meshes. In VIS ’98: Proceedings of the conference on
Visualization ’98, IEEE Computer Society Press, 59–66.

CIGNONI, P., MONTANI, C., ROCCHINI, C., SCOPIGNO, R., AND
TARINI, M. 1999. Preserving attribute values on simplified
meshes by resampling detail textures. The Visual Computer 15,
10, 519–539.



COHEN, J., OLANO, M., AND MANOCHA, D. 1998. Appearance-
preserving simplification. Computer Graphics (Proc. SIG-
GRAPH) 32, 115–122.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifi-
cation using quadric error metrics. Computer Graphics (Proc.
SIGGRAPH) 31, 209–216.

GARLAND, M., AND HECKBERT, P. S. 1998. Simplifying sur-
faces with color and texture using quadric error metrics. In VIS
’98: Proceedings of the conference on Visualization ’98, IEEE
Computer Society Press, 263–269.

GIEGL, M., AND WIMMER, M. 2007. Unpopping: Solving the
image-space blend problem for smooth discrete lod transitions.
Computer Graphics Forum 26, 1 (Mar.), 46–49.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. ACM Trans. Graph. 21, 3, 355–361.

HOPPE, H. 1996. Progressive meshes. Computer Graphics (Proc.
SIGGRAPH) 30, 99–108.

HOPPE, H. H. 1999. New quadric metric for simplifying meshes
with appearance attributes. In IEEE Visualization ’99, D. Ebert,
M. Gross, and B. Hamann, Eds., 59–66.

HORMANN, K., LÉVY, B., AND SHEFFER, A. 2007. Mesh param-
eterization: Theory and practice. In SIGGRAPH 2007 Course
Notes, ACM, 1–122.

KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three
dimensional textures. Computer Graphics (Proc. SIGGRAPH)
23, 271–280.

LACOSTE, J., BOUBEKEUR, T., JOBARD, B., AND SCHLICK, C.
2007. Appearance preserving octree-textures. In GRAPHITE
’07: Proceedings of the 5th international conference on Com-
puter graphics and interactive techniques in Australia and
Southeast Asia, ACM, 87–93.

LEE, C. H., VARSHNEY, A., AND JACOBS, D. 2005. Mesh
saliency. ACM Trans. Graph. 24, 3, 659–666.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfect spatial hashing. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, 579–588.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. ACM Trans. Graph. 21, 3, 362–371.

LOFSTED, M., AND AKENINE-MOLLER, T. 2005. An evaluation
framework for ray-triangle intersection algorithms. Journal of
Graphics Tools 10, 2, 13–26.

MOOTOOLS, 2007. Polygon cruncher. http://www.mootools.com/.

NEHAB, D., AND HOPPE, H. 2007. Texel programs for random-
access antialiased vector graphics. Technical Report MSR-TR-
2007-95, Microsoft Research.

ORGAZ, S., 2007. xnormal. http://www.xnormal.net/.

POLICARPO, F., OLIVEIRA, M. M., AND JO A. L. D. C. 2005.
Real-time relief mapping on arbitrary polygonal surfaces. In
I3D ’05: Proceedings of the 2005 symposium on Interactive 3D
graphics and games, 155–162.

PORUMBESCU, S. D., BUDGE, B., FENG, L., AND JOY, K. I.
2005. Shell maps. ACM Trans. Graph. 24, 3, 626–633.

SANDER, P. V., SNYDER, J., GORTLER, S. J., AND HOPPE, H.
2001. Texture mapping progressive meshes. Computer Graphics
(Proc. SIGGRAPH) 35, 409–416.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND
HOPPE, H. 2003. Multi-chart geometry images. In SGP ’03:
Proceedings of the 2003 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, Eurographics Association, 146–
155.

SHEFFER, A., LÉVY, B., MOGILNITSKY, M., AND BO-
GOMYAKOV, A. 2005. Abf++: fast and robust angle based
flattening. ACM Trans. Graph. 24, 2, 311–330.

SORKINE, O., COHEN-OR, D., GOLDENTHAL, R., AND
LISCHINSKI, D. 2002. Bounded-distortion piecewise mesh
parameterization. In Proceedings of IEEE Visualization, IEEE
Computer Society, 355–362.

TARINI, M., CIGNONI, P., AND SCOPIGNO, R. 2003. Visibility
based methods and assessment for detail-recovery. In VIS ’03:
Proceedings of the 14th IEEE Visualization 2003 (VIS’03), IEEE
Computer Society.

TARINI, M., HORMANN, K., CIGNONI, P., AND MONTANI, C.
2004. Polycube-maps. ACM Trans. Graph. 23, 3, 853–860.

ZHOU, K., SYNDER, J., GUO, B., AND SHUM, H.-Y. 2004. Iso-
charts: stretch-driven mesh parameterization using spectral anal-
ysis. In SGP ’04: Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, 45–54.


