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Figure 1: The proposed method allows the users to easily edit and control the polycube map by sketching the features/constraints on the 3D
model and the polycube. The generated polycube map is conformal and with low area distortion, thus facilitates some graphics applications
such as GPU-based displacement mapping.

Abstract

In this paper we propose an editable polycube mapping method
that, given an arbitrary high-resolution polygonal mesh and a sim-
ple polycube representation plus optional sketched features indicat-
ing relevant correspondences between the two, provides a uniform,
regular and artist-controllable quads-only mesh with a parameter-
ized subdivision scheme. The method introduces a global parame-
terization, based on a divide and conquer strategy, which allows to
create polycube-maps with a much smaller number of patches, and
gives much more control over the quality of the induced subdivi-
sion surface. All this makes it practical for real-time rendering on
modern hardware (e.g. OGL 4.1 and D3D11 tessellation hardware).
By sketching these correspondence features, processing large-scale
models with complex geometry and topology is now feasible. This
is crucial for obtaining watertight displaced Catmull-Clark subdivi-
sion surfaces and high-quality texturing on real-time applications.

Keywords: Digital geometry processing, surface parameteriza-
tion, polycube map, GPU subdivision surface.

1 Introduction

The motivations for this work come from two different, but related
origins. On one side, it is a well known fact that most artists pre-
fer modeling with quads, as quad geometry provides a better flow,
tessellates cleaner and deformations under animation that are no-
ticeably smoother, especially around joints [Oliverio 2006]. On
the other side, hardware-supported tessellation is already feasible
and provides much faster model visualization than traditional meth-
ods [Loop et al. 2009], and graphics card hardware designers have
added specialized programmable units for the task (Shader Model
5 hardware) [Tatarchuk 2008] .

∗J. Xia and I. Garcia contributed equally to this project.

Tarini et al. [2004] pioneered the concept of polycube maps as
a technique to parameterize 3D shapes to the polycube domain,
which is a natural generalization of the cube space and can be use-
ful for the parametric domain of shapes with complicated topology
and geometry. Compared to other global surface parameterization
techniques, a polycube map has two unique features that make them
promising for graphics applications. First, the parametric domain
has a regular structure that naturally supports quadrangulation. The
parametric domain can be easily constructed and visualized. Sec-
ond, the singularities (polycube corners) have fixed structures, i.e.,
of valence 3, 5 or 6. The reduced number of possible singularities
results in a small number of topological combinations.

Constructing a polycube map is a challenging work. From the
users’ point of view, an ideal polycube mapping algorithm should
have at least the following features: Quality: the map is a bijection
with low angle and area distortion. User control: the user can eas-
ily control the mapping by specifying optional features on the 3D
model and their desired locations on the polycube domain. Perfor-
mance: the algorithm is efficient, robust, and automatic except for
the editable user-specified constraints to control the map.

There are several approaches to construct a polycube map-
ping [Tarini et al. 2004; Wang et al. 2007; Wang et al. 2008;
Lin et al. 2008; He et al. 2009]. Unfortunately, none of them
has all the desired features. For instance, [Tarini et al. 2004]
does not guarantee a bijection, [Wang et al. 2007; Lin et al. 2008;
He et al. 2009] do not allow user control. [Wang et al. 2008]
requires a large amount of user interaction to specify the polycube
structure on the 3D model and is not suitable for large-scale models
with complicated geometry and topology. More importantly, none
of them allows the users to edit the polycube map in an easy and
intuitive fashion: In general, current tools for editing in planar
parametric domains can be awkward to use. On the other hand,
editing on a polycube, which more closely resembles the gross
structure of the model, could indeed be simpler, especially where
the user is allowed to control the rough shape of the mapping.

In this paper, we present the editable polycube map to overcome the
limitations of the existing approaches. See Figure 1. Our method
allows the users to construct the polycube map in an intuitive and
easy manner: given a 3D model M and its polycube domain P ,
the user is able to sketch features on M and P to specify feature
correspondences. Then, our system will automatically compute the
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map in such a way that the features on M are mapped to the user-
specified locations on P . Later on, the user is allowed to edit the
features on M , P or both, providing fine-grained control over the
mapping. This way, the editable features can help to mark and pre-
serve sharp features on the polycube-mapped subdivision scheme.

We demonstrate the proposed editable polycube map framework
to GPU-friendly interpolative subdivision surfaces. The positive
properties enumerated above allow an extremely efficient imple-
mentation of GPU-based subdivision surfaces. Also, the reduced
number of combinations, together with watertight sampling, allow
for a continuous subdivision method that smoothly integrates with
current production pipelines. Finally, we are able to provide coarse
regular base meshes with a reduced memory footprint.

The whole process should be compared with the traditional work
artists do to create a model to be used in an environment like a com-
puter game, which usually requires a subdivision scheme to be used
with modern tessellation hardware. In general, if the new model
is based on an existing model, for instance obtained from a laser
scanning process, the final model generation implies manually per-
forming re-topology operations on a subdivision-based representa-
tion, and then transfer corresponding details by normal projection,
which do not ensure bijectivity. Usually, artists start from a coarse
base model, quite often sculpted using a polycube as base mesh.
Then, the model is imported into an application like ZBrush [2010]
and further subdivided with a couple of steps of Catmull-Clark sub-
division. From this moment on, the artist has to model/transfer the
fine-grained details onto the final model. Obviously, this is a time-
consuming and quite redundant procedure. Our proposal is to avoid
this by quickly establishing a bijective correspondence between the
coarse polycube and the input model, and then creating the sub-
division scheme on the polycube-based model by transferring the
details of the high-resolution input model. The resulting model will
have all the enumerated properties and would be ready for usage in
a production environment with a minimal user interaction.

The specific contributions of this paper include:

∙ We present a method that, from a general mesh, creates a high-
quality and artist-controllable polycube map in an efficient
and intuitive manner. Our method allows the users to easily
modify the map and fine-tune the mapping. The user is also
able to control the number of patches in the base mesh of the
subdivision scheme by the construction of the base polycube.
The provided polycube doesn’t need to accurately resemble
the shape of the object. In fact, coarse polycubes are enough.

∙ We provide a subdivision scheme specially built for quad
patch-based tessellation at the GPU for object and character
rendering. Also, this scheme provides a reduced number of
topology combinations thanks to the low number of valence
possibilities (only 3, 5 or 6), which is very important in terms
both of memory footprint and of the texture fetching band-
width, which strongly affects performance.

The remaining of the paper is organized as follows: Section 2 re-
views related works on polycube map, surface quadrangulation and
hardware based tessellation. Then, Section 3 presents the details of
our editable polycube map framework. After that, Section 4 shows
the experimental results and discussions. Finally, Section 5 draws
the conclusion and discusses our future work.

2 Related work

Tarini et al. [2004] pioneered the concept of polycube maps. They
roughly approximated the input 3D model by a polycube, and then
constructed its dual space. By carefully examining the different

configurations that can occur in a non-empty cell, they designed six
projection functions that map the points inside a cell of the dual
space to the polycube surface. These projection functions are ele-
gantly designed to guarantee a globally continuous map. However,
their method does not produce a bijective mapping since two ver-
tices on the same projection line share the same image, which is a
fundamental feature for a large range of applications. Furthermore,
their method has strict requirements on the shape of the polycube,
like that the dual space should completely enclose a slightly modi-
fied version of the input model in an intermediate coordinate space.
Rather than projecting the 3D surface to the polycube, Wang et
al. [2007] introduced an intrinsic approach that first maps the 3D
model and the polycube to the canonical domain (e.g., sphere, eu-
clidean plane or hyperbolic disc), and then seeks the map between
the two canonical domains. The resulting polycube map is guaran-
teed to be a diffeomorphism. However, in this scheme it is difficult
to control the polycube map, i.e., a feature on the 3D model may not
be mapped to a desired location on the polycube. In their follow-up
work, Wang et al. [2008] proposed the user-controllable polycube
map where the users can specify the pre-images of the polycube
corners. Their method works well for shapes with simple geome-
try and topology, but is not feasible for complicated models since
it is very tedious and error-prone to specify the polycube structure
manually. Instead, the method presented here provides much more
user control, which allows us to create polycube maps with a much
smaller number of patches, and gives much more control over the
quality of the induced subdivision surface, which is what makes this
method practical for real-time rendering on modern hardware.

It is known that the polycube map quality (in terms of angle and
area distortion) highly depends on the shape of the polycube. There
have been some research efforts that aim to construct the polycube
automatically [Lin et al. 2008; He et al. 2009]. These techniques
usually break down the input model into smaller and simpler com-
ponents and then use polycube primitives to approximate each one.
For example, the Reeb graphs [Lin et al. 2008] and harmonic func-
tions [He et al. 2009] can be used to guide the shape segmentation.
As heuristics are usually used in the segmentation and polycube
approximation, these approaches may not work for models of com-
plicated geometry and topology. As we mentioned before, none of
the existing algorithms allows the users to easily edit the maps.

Our work is also related to quadrangulation which has been studied
extensively in the past few years. There are a number of excellent
algorithms for the automatic or semi-automatic quadrangulation
of arbitrary simplicial 2-manifolds, such as [Dong et al. 2006],
[Tong et al. 2006], [Kälberer et al. 2007], [Huang et al. 2008],
[Ray et al. 2009], [Bommes et al. 2009]. These constructed quads
can nicely align the principal directions. Litke et al. [2001]
developed a technique to fit Catmull-Clark subdivision surfaces to
a given shape within a prescribed tolerance, based on the method
of quasi-interpolation. However, the subdivision scheme must
be known beforehand, and it does not represent a continuous
parameterization, as our method does.

In the last few years there has been a growing trend to use the
tessellation capabilities of modern graphics hardware to generate
high-resolution models from a coarse base mesh [Bunnell 2005]
[Tatarchuk 2008]. Loop et al. [2009] and Castaño [2008b]
presented a method for approximating subdivision surfaces with
hardware-accelerated parametric patches, but their method presents
some disparity between the surface mesh they created and the one
that is rendered in realtime, while our method presents a uniform,
regular and artist-controllable quads-only mesh with a parameter-
ized subdivision scheme, which fits nicely into their pipeline be-
cause of the low number of combinations it generates, but also pro-
vides a number of already-mentioned benefits for the artist.



Another related topic is cross parameterization. Recently,
many algorithms are developed for building the mappings be-
tween general surfaces of same topology. A common ap-
proach is to parameterize the models over a common base
mesh [Lee et al. 1999; Michikawa et al. 2001; Praun et al. 2001;
Kraevoy and Sheffer 2004]. In this approach, the meshes are split
into matching patches, each set of which is then parameterized on
a common planar domain. A given set of matching feature points
serve as the corners of patches and the feature correspondences. In
particular, Yeh et al. [2010] proposed an interactive interface for
correspondence placement. However, all the above approaches use
points as the feature correspondence, while our method supports
user sketches. In practice, we find it more intuitive to draw feature
lines than to place points.

3 Editable Polycube Map

3.1 Overview

As mentioned, the objective of the proposed technique is, starting
from a high-resolution model coming either from an artist or a 3D
scanner (plus its cleaning stage), to build a new subdivision scheme
that allows user control over a reduced number of singularities, and
have that model ready for seamless texturing, watertight displace-
ment, etc. This should be done in an artist-controllable way, using
only quads, and without wasted space in texture space.

Our input is a high-resolution model plus a simple polycube rep-
resentation, which is constructed manually by the users1. By con-
trolling the position and location of the cubes, and by providing
additional controlling sketches, the user has control at all times
over the number and location of the singular vertices in the result-
ing quads-only mesh. Then the user-specified features are sampled
with points, from which we compute the shortest distance for each
other sampled point using multi-source Dijkstra’s shortest path al-
gorithm. Although the computed distance field induces a triangu-
lation on the 3D model, the path between two points is not straight
and the resulting patch can have a complex non-triangular shape. To
ensure the quality of the triangulation, we compute the geodesic tri-
angulation on the polycube by using the correspondence of the user-
specified features on the 3D model and the polycube. This way,
the resulting triangulation is smoother and more visually pleasing
than the one that could be obtained directly from the multi-source
Dijkstra computation. After that, both shapes are segmented into
genus-0 patches, keeping an identification between the segments in
the polycube and in the high-resolution model. We compute the
map between each pair of patches using a series of harmonic maps.
By setting the boundary conditions carefully, the computed map is
guaranteed to be continuous along the cutting boundaries. Finally,
a simple and effective global diffusion algorithm is applied to im-
prove the map quality. The resultant map is bijective and satisfies
the user-specified constraints.

The polycube map induces a quad-remeshed version of the high-
res model. An immediate benefit is that the patches of the result-
ing remeshed model come from tessellated squared faces, so a very
low-resolution version of the model can be built from the original
polycube faces. This low-resolution model not only has quads as its
only primitive, but also has only vertices with a small and restricted
valence number, only 3, 4, 5 and 6. This low-resolution model is
the basis of our subdivision scheme, see Section 3.4.

Then, polycube texture mapping is performed, working only with
the polycube version of the model, and consists of creating a 2D

1Many commercial softwares, such as Maya and 3ds Max, allow the

users to do this easily.

texture atlas which contains all externally visible polycube faces,
which is an easy task as the previous step already kept only the
visible faces that are not shared by more than one cube. To build
the atlas, we just placed each face in consecutive squares in the final
texture atlas.

Finally, in runtime, only the very low-resolution model needs to
be sent to the GPU, along with the texture maps built in the pre-
processing, to generate a continuous subdivision scheme with all
the benefits mentioned in Section 1. As the very low-resolution
model can be animated, its run-time tessellated version also can. It
is important to mention that the user/artist has full control over the
process through the segmented input polycubes, the sketched fea-
tures and the segmentation step, and can introduce further tweak-
ing in the processed mesh without the need to re-parameterize the
model. The entire pipeline is illustrated in Figure 2.

3.2 Constructing Polycube Map

The input model M for the method presented in this paper comes
from two kinds of possible input models: a model from a 3D scan-
ner, after a cleaning pass, or a high-resolution model created di-
rectly by an artist.

Along with the high-resolution model, the artist/modeler should
also provide a polycube surface P that follows the shape of the orig-
inal model. This polycube model can be coarse or fine, both being
able to create a good dual parameterization of the original mesh,
but depending on how fine P model is, it would be much easier to
capture high frequency details in the final tessellated model.

3.2.1 Segmentation

The divide-and-conquer approach [He et al. 2009] constructs the
polycube map by breaking down the model into genus-0 patches
and then computing the piecewise map independently. Although
their method is able to divide the model in automatically, all cut-
ting planes are horizontal. Thus, the segmentation highly depends
on the orientation of the model and may result in too many small
patches, and the cutting boundary may not represent any feature.

In our framework, the users are allowed to sketch the features freely
on the models. Here we assume that the user-specified features are
consistent. For example, as shown in Figure 2(b), the user sketches
a few features on the 3D model M , and the same number of features
must be specified on the polycube P . Furthermore, the spatial re-
lation of the features should be consistent in the sense that they are
aligned in a similar order, otherwise, the induced harmonic maps
may not be matched.

Our segmentation algorithm is as follows:

Step 1. Given the user-specified sketches, 
i ∈ M , 

′

i ∈ P ,
i = 1, ⋅ ⋅ ⋅ , n, we sample the sketches with set of points. Let

S = {pj}
m
j=1 and S′ = {p

′

j}
m
j=1 denote the sample points on

M and P respectively.

Step 2. Use pj ∈ M , j = 1, ⋅ ⋅ ⋅ ,m, as source points and com-
pute the shortest distance for every point on M using multi-source
Dijkstra’s algorithm. So each vertex v is associated with a distance
d(v, pj) where pj is the closest sample point to v. Let c(v) ∈ S be
the closest sample point of vertex v.

Step 3. Consider each mesh edge eij = (vi, vj), where vi and vj
are neighboring mesh vertices. If c(vi) ∕= c(vj), let s1 = c(vi) and
s2 = c(vj) be the two sample points. Mark the two sample points
s1 and s2 as neighbors.

Step 4. For every pair of sample points si and sj which are marked
as neighbors, find the shortest path between s1 and s2. It can be



(a) (b) (c) (d) (e)

Figure 2: Algorithmic pipeline. (a) The user sketches constraints on the 3D model M and polycube P . (b) Black dots are sample points
on these constraints. (c) We compute the distance fields using the samples as sources. (d) The distance fields induce a triangulation on M .
Using the correspondence of the sketches, we compute the geodesic triangulation on P , so the model can be cut into genus-0 patches. We
compute the constrained map between each pair of patches such that constraints are mapped consistently. With a carefully designed boundary
condition, the two maps can be glued seamlessly. (e) The iso-parametric line on M : On top the base level of the subdivision surface.

shown that two shortest paths can only meet at the regions of the
two ending sample points. Then on the polycube P , compute the

geodesic between s
′

i and s
′

j .

Step 5. Segment M and P along the computed shortest path and
geodesic path.

In the above algorithm, we compute a distance field on the 3D
model M using the user sketched constraints. As shown in Fig-
ure 3, this distance field naturally induces a triangulation on M .

(a) (b) (c) (d)

Figure 3: Distance field based on multi-source Dijkstra’s algo-
rithm and its induced triangulation. Black dots in (a) are sample
points on the user sketches (color curves). Using these samples
as sources, we compute the Dijkstra’s based distance field on the
model, as shown in (b) (warm colors mean small distance to the
sources, cold colors are large distances). Curves in (c) are the
shortest paths between sample points, which induces a triangula-
tion on M . By using the correspondence of the user sketches, in (d)
we construct the geodesic triangulation on the polycube P .

3.2.2 Constrained map

Let Pi ∈ P and Mi ∈ M be the pair of segmented patches, each
of which is a genus-0 surface with only one boundary. We want
to find a bijective and smooth map � : Mi → Pi. Rather than
computing the map directly, we first parameterize Mi to the unit
disc using harmonic map, i.e., f : Mi → D such that △f = 0 and
f maps the boundary of Mi to the boundary of D using arc length
parameterization, f(∂Mi) = ∂D. Similarly we also parameterize
Pi to the unit disc using harmonic map g : Pi → D. More details
of discrete harmonic map could be found at [Eck et al. 1995].

Then we seek a smooth map between two unit discs ℎ : D → D.
This map ℎ is also computed using harmonic map △ℎ = 0 and

the boundary condition is set as follows: Let s1, s2 and s3 be the
sample points on ∂Mi, and f(sj) ∈ ∂D, j = 0, 1, 2 be the images

on the boundary of unit disc. Similarly, let g(s
′

j) ∈ ∂D be the

images of the sample points s
′

j ∈ Pi. Then we require the function

ℎ maps f(sj) to g(s
′

j), i.e., ℎ ∘ f(sj) = g(s
′

j), j = 0, 1, 2. The
images for the points between f(sj) and f(s(j+1)%3), j = 0, 1, 2,
are computed using arc length parameterization.

Finally, the polycube parameterization is given by the composite
map � = f ∘ ℎ ∘ g−1 as shown in the following commutative
diagram:

Mi Pi

D D

-
�

?

f

?

g

-

ℎ

Figure 4 demonstrates the results of constrained map. User can
take full control of the polycube map using simple sketches as the
boundary condition.

Figure 4: The users can take full control of the polycube map by
simple sketches. The thumbnails show the sketched constraints.

3.2.3 Globally smoothing map

We glue the piecewise maps �i : Pi → Mi together. With
the above boundary conditions, the maps are consistent along the
boundaries which can be glued seamlessly. The resulting map ∪i�i

guarantees to be C0 continuous along the segmentation boundaries.

We use Laplacian smoothing [Field 1988] to improve the continuity
along the segmentation boundaries. Given the initial polycube map
� : P → M , let p′ = �(p) ∈ M denote the image of p ∈ P . Then



(a) initial (b) 100 (c) 500 (d) 2000
map iterations iterations iterations
1.151 1.125 1.105 1.087

Figure 5: Smoothing the polycube map. The initial map has only
C0 continuity along the segmentation curves and user-specified
features. Thus, one can clearly see the large distortion and un-
smoothness in (a). Using the Laplacian smoothing algorithm, the
distortion smoothly spreads out over the entire model, see (b)-(d).
The values are the angle distortions. The step length � = 0.05.

we solve the following diffusion function:

∂p′(t)

∂t
= −(△p′(t))∥, (1)

where v∥ = v − (v,n)n is the tangent component of v, n is the
normal vector and (, ) is the dot product.

Since the given polycube map � is represented in a quadrilateral
mesh induced by the tessellation of the polycube in which each
quad in P is a square, we use the following Laplace operator:

△ p′ = p′ −
1

m

∑

pq is edge

q′, (2)

where m is the valence of p.

Figure 6: Interactive editing of the polycube map. Initially, the
user only draws three features on the mouth, ears and tail. As a
result, the horse head, body and tail are parameterized well, but
the four legs are poorly sampled. Then the user can improve the
map quality by specifying additional features on the feet. Finally,
the whole model is parameterized well.

The above diffusion equation can be solved easily using the Euler
method. We set the step length � = 0.05 in our experiments.

Following [Degener et al. 2003; Tarini et al. 2004], we measure the
map quality in terms of angle and area distortions which integrate
and normalize the values �1�2 + 1/�1�2 and �1/�2 + �2/�1,
where �1 and �2 are the singular values of the Jacobian matrix
of �. �angle = �area = 1 when the map � is isometric. As
shown in Figure 5, our method leads to visually pleasing results
in only a few hundred iterations. Khodakovsky et al. [2003] in-
troduced a globally smooth parameterization method. Particularly,
our globally smooth algorithm is designed for polycube mapping,
while their method is for mapping between triangle shaped patches.

3.3 Texture Mapping and run-time data generation

For any further processing, we should provide a map from the poly-
cube space to regular texture space, a process that only needs the
polycube texture coordinates of the model. With them, a 2D texture
atlas is created containing the textures corresponding to all visi-
ble polycube faces, in a similar way to the proposal by Cohen at
al. [1998]. As already mentioned, this is an easy task as the previ-
ous steps already discarded internal faces shared by more than one
cube. Once the visible faces are found, they are placed in consecu-
tive squares in the final texture atlas. Each vertex in the model is as-
signed its respective texture coordinates in the atlas, thus smoothly
integrating texturing to the polycube mapping process.

Once the mapping stage has finished, we are have a bijective map-
ping between the tiles in texture space (one for every patch) and
the artist-provided high-resolution 3D geometry. Probably, the
artist also provided normal maps, color maps, specular maps, etc.
We have developed a completely automatic scheme that transfers
(bakes) that information to texture tiles, and encodes them along
with the subdivision information. Traditionally, applications like
ZBrush [2010] perform an explicit projection over different reso-
lution versions of the same model, but this can have serious prob-
lems with an arbitrary simplification scheme. In our case, as we
have defined a dual parameterization, this is done in an automatic
way without losing any detail in the process. To do it, we rasterize
each high-resolution patch into its associated texture space, saving
the required information (normals, occlusion maps, etc). Special
care should be taken when doing this process with the displace-
ment maps, either if they are scalar displacement along the surface
normal or full 3D displacements, as we also need to have access
to neighboring patches to correctly generate this information. The
whole process can easily be done with tools like XNormal [2010].

3.4 GPU-based subdivision displacement

The previous sections explained how to build the bijective map-
ping between the model and the polycube-map. Now, we need
to explain how the induced subdivision surface is built. In
general, we can generate a parameterized subdivision scheme
which can be effectively used in any graphics application like
computer-generated movies, as well as real-time applications.
In our implementation, as the bijection has already been es-
tablished, we only need to recover the coarse quads from the
polycube-mapped model. In order to do that we (re-)constructed
the Catmull-Clark Subdivision scheme with the algorithm de-
scribed in [Lanquetin and Neveu 2006], which allows to obtain a
valid Catmull-Clark subdivision scheme for filming rendering and
prepare the approximate Catmull-Clark [Loop and Schaefer 2008]
data structures (textures & base mesh) for the real-time subdivision.

Later on, in real time applications, we use the subdivision algorithm
presented by Loop and Schaefer [2008], following the implemen-



Figure 7: GPU-based subdivision displacement. Top left: our base
mesh (level 0 of the subdivision scheme). Top middle: patch struc-
ture we associate with the subdivision surface (green patches con-
tain only valence 4 vertices, and the darkness of the orange levels
shows the number of extraordinary vertices, darker patches having
the greater number). Bottom left: the base mesh superimposed to
the approximate Catmull-Clark subdivision surface in grey. Bot-
tom middle: In lilac, the subdivision surface. Right Column: the
subdivision surface with GPU-based subdivision displacement (the
iso-parametric curves can be seen in the top right).

Table 1: Comparison of polycube map construction methods. Sym-
bols:  good, G# fair, # poor.

Tarini Wang Wang Lin He Our

Features [2004] [2007] [2008] [2008] [2009] method

Map quality  G# G#    

Bijection #      

User control # # G# # #  

Editing # # # # #  

Polycube construction # # #   #

Automatic  # #    

Large models  # # # G#  

Arbitrary topology # # # # G# G#

tation described by Castaño [2008b]. The method presented here is
particularly well suited for this implementation as we only generate
vertices with valences 3,4,5 or 6. In this implementation, domain
shaders (or vertex shaders when using instanced tessellation) are
responsible for providing the final position of each new vertex from
the tessellated mesh.

In order to have watertight sampling of the displacement map, we
define, for each patch, the one who “owns” every single edge and
corner [Castaño 2008b; Castaño 2008a]. This way, all patches are
coordinated with respect to what texture coordinate to use when
sampling the displacement map. In practice, this amounts storing,
for every edge and for every corner, the texture coordinates of the
owner of those features (4 texture coordinates per vertex). At run-
time, only a single texture sample is needed; and the corresponding
texture coordinate can be selected with a simple calculation.

Geometry image tessellation is also an interesting option that be-
comes subcase of our strategy, but it is a technique mainly intended
for static and not too large objects. With geometry images, no tex-
ture coordinate-specific information is required, sufficing just the
ownership data to compute everything in the respective shaders.

4 Results and Discussion

We tested our method with a wide-range of models with various
geometry and topology configurations as shown in Fig. 10. Table 2

Table 2: Statistics of experimental results. #△: # of triangles in
the input mesh; #□: # of squares in the polycube of base level; l:
# of subdivision levels for the high-resolution polycube; nc: # of
corners in P ; nf : # of user-specified features; T : time measured
in seconds; �1: angle distortion; �2: area distortion.

#△ #□ l nc nf T �1 �2

Armadillo 346K 1012 6 82 28 148 1.16 1.18

Arthur 252K 57 7 12 5 76 1.02 1.13

Bunny 144K 452 4 22 6 35 1.01 1.13

Horse 67K 436 5 28 8 11 1.04 1.07

Lucy 526K 980 5 38 15 210 1.12 1.23

Skull 52K 24 7 8 3 7 1.02 1.06

Tylo head 500K 920 5 32 12 194 1.10 1.25

Isidore Horse 151K 74 8 14 6 48 1.01 1.07

shows the statistics of our experiments. Figure 6 shows an example
of interactive editing of the polycube map of the horse model.

A good global bijective parameterization is very important
for modeling and texturing, as typical projections as used in
[Tarini et al. 2004] unavoidably have problems since two vertices
on the same projection line share the same image, something that
produces artifacts that are clearly visible in Figure 8.

Figure 8: Comparison of the bijectivity between the editable poly-
cube map and the original polycube implementation, at the left the
original [Tarini et al. 2004]. Top row: insets of the Armadillo
head. Bottom row: insets of its feet. As we can see, non-bijectivity
in [Tarini et al. 2004] results in a dependence of multiple points on
the mesh with a single point in texture space: painting this single
point stains other places than the one originally intended.

We also quantitatively compared our methods with existing meth-
ods like [Tarini et al. 2004], [Wang et al. 2007], [Wang et al. 2008]
and [He et al. 2009] as shown in in Table 1 and Figures 8 and 9.
[Tarini et al. 2004] is efficient for large scale models, but it can not
guarantee the bijectivity due to the projection of the 3D model to
the polycube, and may result in some undesired artifacts in texture
mapping and painting, see Figure 8. [Wang et al. 2007] computed
the polycube map in an intrinsic way by conformally parameter-
izing M and P to canonical domains and then seeking the map
between them. For a genus-0 shape with complex geometry (like
the Armadillo), the conformal spherical parameterization has very
large area distortion on the elongated parts (e.g. arms, legs and
tail). Thus, the induced map also has a large area distortion with
uneven sampling. [Wang et al. 2008] required to manually specify
the images of the polycube corners and edges on the 3D model and
then computed the map for each polycube face individually. The
user-defined polycube structures on M can be considered as our
constraints. However, it is very tedious and error-prone to specify
them manually if the polycube is complicated, which precludes its
usage for large-scale models. Furthermore, the user can not specify
other features or constraints in [Wang et al. 2008]. Automatic ap-



proaches as [Lin et al. 2008; He et al. 2009] use heuristics and may
not work well for complex models. In [He et al. 2009], both M and
P are segmented by horizontal cutting planes, and the cutting locus
serve as constraints. Thus, the generated map is orientation depen-
dent. Due to the complex geometry of the Armadillo, e.g., the arms
are not axis aligned, there are large distortions on the upper arms
and shoulder, see Figure 9. Compared to the existing approaches,
our method is more intuitive and flexible in terms of user control
and editing, and can generate better quality polycube-maps.

1.32 1.35 1.29 1.25 1.16
1.22 88.62 1.24 1.23 1.18

Figure 9: Comparisons of our method with [Tarini et al. 2004],
[Wang et al. 2007], [Wang et al. 2008] and [He et al. 2009]. We
use the same polycube to make the comparison fair. Our method
is more intuitive and flexible in terms of user control and editing,
and can generate polycube map of better quality. The values below
each figure are the angle and area distortions.

Discussions We want to emphasize the differences between our
method and [He et al. 2009]. They first segmented the 3D model
and polycube by horizontal planes, computed a map between each
pair of segmented components, and finally smoothed the map by
solving a harmonic map for the entire shape. Although using the
same divide-and-conquer strategy, our method is completely dif-
ferent in all the following steps: First, since the cutting loci are
also the constraints of the map, [He et al. 2009] can only map the
horizontal, planar features from the 3D model. Our segmentation
allows the users to cut the model by arbitrary closed curves, result-
ing in more flexible and meaningful constraints. Furthermore, our
method supports the user control and editing that are not provided
in [He et al. 2009]. Second, [He et al. 2009] mapped the segmented
components to the multiply connected rings by an uniformization
metric, and then computed a harmonic map between the rings. It is
known that computing this metric is a nonlinear time-consuming
process. Our method computed a harmonic map between two
topological disks, so it is more efficient than [He et al. 2009]. Fi-
nally, rather than solving a harmonic map for the entire shape, we
smoothed the whole map by an iterative method to diffuse the angle
distortion. As shown in Figure 5, our method is very effective and
leads to a high quality map with only a few hundred iterations, as
only very simple vertex operations are involved in each iteration.

It is known that the distortions of polycube parameterizations
highly depend on the shape of the polycube. In general, the more
accurate its representation, the lower distortion of the map. How-
ever, the price to pay is the larger number of extraordinary points
(polycube corners). Thus, there is a tradeoff between quality and
complexity. Through our experiments, we observed that for shapes
with extruding regions, e.g., the Armadillo’s fingers and toes, it is
usually a good idea to design an accurate polycube to model these
features. In our framework, we leave the choice to the users.

5 Conclusions

We have proposed a new method that aims to improve the exist-
ing ones and develop a very practical and efficient system. From a
general mesh with optional featured sketches, we create an artist-
controllable quads-only mesh with a globally smooth parameteri-
zation. The method guarantees that the computed map is bijective

and conformal except at a finite number of extraordinary points (the
polycube corners). As listed in Table 1, our method has most of the
user-desired features: The created mesh is uniform, regular and is
generated from the base polycube mesh in an automatic manner.
During the preprocessing stage, the artist/user is able to control the
number of patches in the base mesh of the subdivision scheme by
the construction of the base polycube. Then, the artist still has the
possibility of fully controlling the process by sketching correspon-
dence lines between the high-resolution model and the polycube.

On the more technical side, as a result of the reduced number of
topology combinations, we are able to have both a small memory
footprint and a reduced texture fetching bandwidth, which strongly
improves run-time performance. The result can be tessellated with
modern hardware using instanced tessellation, or with the new pro-
grammable units in Shader Model 5 hardware.

Limitations The limitation of the proposed framework lies in the
segmentation step. For models with genus more than one, the users
are required to sketch a loop on each handle explicitly. Then our
algorithm can cut along the user-specified loops and then automat-
ically segment the model into genus-0 patches. We conducted ex-
periments for models with non-trivial topology (such as Kitten of
genus-1 and Happy Buddha of genus-6). In the future, we will im-
prove our framework by computing the canonical homology basis
automatically, which can be used as the constraints for segmenta-
tion.
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